SEVIER

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

NHC-catalyzed generation of difluorocarbene and its application to difluoromethylation of oxygen nucleophiles

Kohei Fuchibe, Yuta Koseki, Tatsuya Aono, Hisashi Sasagawa, Junji Ichikawa *

Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan

A R T I C L E I N F O

A B S T R A C T

Article history: Received 20 August 2011 Received in revised form 23 September 2011 Accepted 28 September 2011 Available online 6 October 2011

Keywords: Difluorocarbene NHC Difluoromethylation Organocatalyst Difluoromethyl ethers Difluoromethyl imidates

1. Introduction

Difluorocarbene is a synthetically useful species for the introduction of a difluoromethylene group into organic molecules $[1]$. Since CF₂-containig compounds play crucial roles as pharmaceuticals, agrochemicals, and functional materials [\[1a,2\]](#page-7-0), advancement in the generation and the utilization of difluorocarbene is desired in contemporary organic synthesis.

To date, three types of methods have been developed for the generation of difluorocarbene ([Scheme](#page-1-0) 1). Pyrolysis has been studied in detail for decades and adopted to generate difluorocar-bene ([Scheme](#page-1-0) 1a). Sodium chlorodifluoroacetate (CClF₂CO₂Na), which requires a high temperature (typically >120 °C), acts as a representative reagent for this purpose [\[3–5\].](#page-7-0) Hexafluoropropyrene oxide (HFPO, >150 °C) [\[6\]](#page-7-0) and hexafluorocyclopropane (160– 170 °C) [\[7\]](#page-7-0) also work as thermal precursors to difluorocarbene [\[8,9\].](#page-7-0)

 α -Elimination of HCl and its analogous reactions are convenient alternatives for the above-mentioned pyrolysis ([Scheme](#page-1-0) 1b). Chlorodifluoromethane (HCFC-22) is the reagent of choice to release difluorocarbene at relatively low temperatures, although strongly basic conditions are required [\[10\]](#page-7-0). Recently, α -eliminations triggered by nucleophilic substitutions on carbonyl group [\[11\]](#page-7-0) and sulfonyl group [\[12\]](#page-7-0) are reported [\[13\]](#page-7-0).

Decomposition of trifluoromethylmetal reagents provides another route to difluorocarbene [\(Scheme](#page-1-0) 1c). Phenyl

Controlled generation of difluorocarbene was effected by an NHC catalyst under mild conditions starting from trimethylsilyl 2,2-difluoro-2-fluorosulfonylacetate (TFDA). Cyclohexenones and tetralones were treated with TFDA in the presence of catalytic amounts of N,N'-dimesitylimidazolium chloride and sodium carbonate. The ketones were difluoromethylated with the generated difluorocarbene to afford enol difluoromethyl ethers without difluorocyclopropanation. The ethers thus obtained were dehydrogenated with DDQ to furnish aryl difluoromethyl ethers in high yield. Under similar conditions, secondary amides underwent difluoromethylation selectively on the oxygen atom to give difluoromethyl imidates, which allows the formation of 2-difluoromethoxypyridines.

- 2011 Elsevier B.V. All rights reserved.

(trifluoromethyl)mercury [\[14,15\]](#page-7-0) and trimethyl(trifluoromethyl) stannane [\[16\]](#page-7-0) in combination with sodium iodide are reported to release difluorocarbene. However, using a stoichiometric amount of toxic reagents should be avoided in large-scale preparations.

As described above, the reported methods for generating difluorocarbene have following drawbacks: (i) high reaction temperatures, (ii) strongly basic conditions, (iii) use of hazardous reagents, and in general, (iv) high loading of reagents. These drawbacks need to be overcome [\[17\]](#page-7-0).

Trimethylsilyl 2,2-difluoro-2-(fluorosulfonyl)acetate (TFDA) is a practically useful reagent developed by Dolbier to generate difluorocarbene under mild conditions in a catalytic manner [\[18\].](#page-7-0) This reagent releases difluorocarbene in the presence of a fluoride ion (F⁻, 1-2 mol%), which is presumed to attack the Si atom of TFDA to promote decomposition [\(Scheme](#page-1-0) 2). The generated difluorocarbene is employed in difluorocyclopropanation of alkenes [\[18,19\]](#page-7-0), alkynes [\[20\]](#page-8-0), and allenes [\[21,22\].](#page-8-0)

Although useful, the rapid generation of difluorocarbene from TFDA may cause an overreaction. When alkyl ketones were treated by the TFDA/F⁻ system, the formed enol difluoromethyl ethers underwent further difluorocyclopropanation with the second molecule of difluorocarbene [\[23\]](#page-8-0).

To control the reaction, we focused on N-heterocyclic carbene (NHC) as an activator of TFDA. NHC is a stable and nucleophilic carbene [\[24\],](#page-8-0) and acts as an organocatalyst in various synthetic reactions [\[25\]](#page-8-0). Note that various NHC-catalyzed cyanosilylations [\[26\]](#page-8-0), aldol condensations [\[27\]](#page-8-0), azidations [\[28\]](#page-8-0), and trifluoromethylations [\[29\]](#page-8-0) with Si-containing reagents have been reported [\[30\]](#page-8-0). Because the reactivity of NHC can be tuned by altering the

^{*} Corresponding author. E-mail address: junji@chem.tsukuba.ac.jp (J. Ichikawa).

^{0022-1139/\$ –} see front matter © 2011 Elsevier B.V. All rights reserved. doi:[10.1016/j.jfluchem.2011.09.012](http://dx.doi.org/10.1016/j.jfluchem.2011.09.012)

Scheme 1. Conventional methods for difluorocarbene generation.

central heterocyclic core and the substituents on nitrogen, NHC is a promising candidate for the activation of TFDA to regulate the generation of difluorocarbene.

Based on the considerations described above, NHC-catalyzed generation of difluorocarbene from TFDA were examined and applied to difluoromethylation of oxygen nucleophiles. The details of our investigations are described below.

2. Results and discussion

2.1. Reaction conditions

Indan-1-one 1a was selected as a model substrate for Odifluoromethylation and treated with TFDA (2 equiv) in the presence of 1–10 mol% of activators for TFDA. The yields of the produced enol ether 2a and the undesired overreaction product difluorocyclopropane 3 were determined by 19 F NMR spectroscopy. The results of our examination on the activators are summarized in [Table](#page-2-0) 1.

Fluoride ion, the activator originally adopted by Dolbier at 105– 120 °C [18b], gave only a 14% yield of **2a** at 80 °C (Entry 1). Other reagents such as DABCO and amine N-oxides, which can activate Si-containing reagents [\[31\]](#page-8-0), were found to be ineffective (Entries 2 and 3).

The difluorocarbene generation proceeded smoothly by using an NHC catalyst. 1,3-Dimesitylimidazolylidene (IMes), generated in situ from 1,3-dimesitylimidazolium chloride (IMes-HCl, 1 and 2 mol%) and sodium carbonate (10 and 20 mol%), gave 2a in 70% and 74% yield, respectively (Entries 5 and 6). In these cases, only a trace amount of 3 was observed. Note that the enol ether 2a was stable enough upon standard silica gel chromatography and was isolated in reasonable yield (Entry 6). Reducing the loadings of TFDA from 2 to 1.2 equiv resulted in a diminished yield of 2a (61%, Entry 7). IMes-HCl alone did not work well (4% of 2a, Entry 8), which shows the effect of NHC.

It must be mentioned that isolated IMes gave a decreased yield of 2a (52%) along with a 17% yield of 3 (Entry 9). The rapid generation of difluorocarbene leads to undesired difluorocyclopropanation, even with the NHC catalyst. The use of imidazolinium salt SIMes HCl, triazolium salt 4 HBr, and thiazolium salt 5 HI also

Scheme 2. Generation of difluorocarbene by the TFDA/F⁻ system.

resulted in the formation of considerable amounts of difluorocyclopropane 3, making the reaction less selective (Entries 10–12).

The use of sodium carbonate with a ratio of 10:1 to IMes_{HCl} was found to be suitable to achieve a high yield of 2a [\(Table](#page-2-0) 2). When the loading of sodium carbonate was reduced to 2 mol% $(Na₂CO₃:*Mes-HCl* = 1:1),$ the yield of **2a** decreased to 54% (Entry 1). On the other hand, the 100 mol% loading of sodium carbonate $(Na₂CO₃:IMes-HCl = 50:1)$ also reduced the yield of 2a, and the undesired 3 was obtained in 32% yield (Entry 3). The use of larger amounts of sodium carbonate also resulted in rapid formation of difluorocarbene, leading to the undesired difluorocyclopropanation reaction of 2a. Potassium carbonate, potassium tert-butoxide, and DBU in place of sodium carbonate gave inferior results (Entries $4-6$).

Effects of temperature and solvent were examined ([Table](#page-2-0) 3). The reaction of indan-1-one 1a at 70 \degree C gave 2a in 39% yield (Entry 1). The yield of $2a$ was improved up to 70% at 80 °C (Entry 2), whereas elevating the temperature to 90° C showed no further improvement (Entry 3). Thus, NHC is an efficient catalyst that acts at 80 \degree C. 1,4-Dioxane and 1,1,2,2-tetrachloroethane were not suitable solvents (Entries 4 and 5).

NHC was conclusively found to be a suitable catalyst that can control the rate of difluorocarbene generation from TFDA. By optimizing the NHC catalyst and reaction conditions, indan-1-one 1a was successfully transformed into the corresponding enol difluoromethyl ether 2a in a selective manner.

2.2. Mechanism of enol difluoromethyl ether formation

[Scheme](#page-2-0) 3 shows the proposed mechanism for the generation of difluorocarbene and the formation of enol difluoromethyl ethers. IMes, generated from IMes-HCl and sodium carbonate in situ, attacks the Si atom of TFDA. Decomposition of TFDA provides the key difluorocarbene, accompanied by formation of $CO₂$, $SO₂$, and fluoride ion. The formed silylimidazolium salt A undergoes desilylation with the released fluoride ion to regenerate free IMes. The generated difluorocarbene reacts with 1a to afford 2a, presumably via oxycarbenium intermediates [\[23b\]](#page-8-0).

During the above experiments, tetrafluoroethylene was observed in the ¹⁹F NMR spectra of the reaction mixtures (4 ppm vs. C_6F_6 [\[32\].](#page-8-0) This suggests that difluorocarbene was actually formed in the reaction medium.

2.3. Synthesis of aryl difluoromethyl ethers

2.3.1. Background and strategy

Aryl difluoromethyl ether units are often found in structures of pharmaceuticals, agrochemicals, and their candidates. For example, pantoprazole is a proton pump inhibitor and is used for a

Table 1

NHC-catalyzed generation of difluorocarbene and formation of enol difluoromethyl ethers: effect of activator for TFDA.

DABCO = 1,4-diazabicyclo[2.2.2]octane; NMO =N-methylmorpholine N-oxide.

^{a 19}F NMR yield based on $(CF_3)_2C(p-Tol)_2$.
^b Isolated vield.

 c TFDA (1.2 equiv).

short-term treatment of erosion and ulceration of esophagus [\[33\].](#page-8-0) Zardaverine is a phosphodiesterase III/IV inhibitor and attracts much attention as a potential therapeutic agent for asthma [\[34\].](#page-8-0) Brofluthrinate [\[35\]](#page-8-0) is an insecticide that acts as a sodium channel modulator [\[36\]](#page-8-0) (Fig. 1).

To date, aryl difluoromethyl ethers have been synthesized by an electrophilic difluoromethylation of phenols with difluorocarbene [\[37\]](#page-8-0). For instance, phenoxides are difluoromethylenated with difluorocarbene, generated by α -elimination of chlorodifluoromethane, to give aryl difluoromethyl ethers after protonation: however, the preparation of the starting phenols is required [\[10a–](#page-7-0) [c,38,39\].](#page-7-0)

We envisaged developing a new synthetic method for aryl difluoromethyl ethers with substituents by utilizing the

DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

1a, TFDA (2 equiv), IMes HCl (2 mol%), base, toluene, 80 °C.

 $b^{19}F$ NMR yield based on $(CF_3)_2C(p-Tol)_2$.
^c Table 1, Entry 6.

Table 3

Effects of solvent and temperature.^a

^a **1a**, TFDA (2 equiv), IMes-HCl (1 mol%), Na₂CO₃ (10 mol%).
^{b 19}F NMR yield based on (CF₃)₂C(p-Tol)₂.
^c Table 1, Entry 5.

above-mentioned selective formation of enol difluoromethyl ethers ([Scheme](#page-3-0) 4): six-membered ketones (cyclohexanone and tetralone derivatives) would be transformed into the corresponding enol difluoromethyl ethers with difluorocarbene, generated by the NHC catalyst. The formed enol difluoromethyl ethers might

Scheme 3. Proposed mechanism for CF_2 generation and CHF_2 ether formation.

Fig. 1. Examples of bioactive aryl difluoromethyl ethers.

Scheme 4. Synthetic strategy for substituted aryl difluoromethyl ethers.

be readily dehydrogenated to construct a benzene ring, thus targeting aryl difluoromethyl ethers [\[40\]](#page-8-0). Commercial and synthetic availability of the cyclohexanone derivatives makes this a practical approach for the synthesis of substituted aryl difluoromethyl ethers.

2.3.2. One-pot synthesis of aryl difluoromethyl ethers

Various aryl difluoromethyl ethers were successfully synthesized from cyclohexenones and tetralones via the expected difluoromethylation–dehydrogenation sequence (Table 4). First, 3-phenylcylclohexenone 1b was transformed into the corresponding enol difluoromethyl ether 2b (not shown) by the TFDA/NHC system (Entry 1). The resulting mixture was treated with DDQ (2 equiv) under reflux. Standard chromatographic separation of the products gave biphenyl-3-yl difluoromethyl ether 6b in 78% yield.

This method was successfully applied to tetralone derivatives, which produced difluoromethyl naphthyl ethers. Not only did parent 1c give 1-naphthyl ethers 6c in 81% yield, but also bromo- and chlorotetralones 1d and 1e afforded the halogenated naphthyl ethers 6d and 6e in 75% and 77% yield, respectively (Entries 2–4). Electron-rich tetralones appeared to be suitable for this reaction: Methyl- and methoxy-substituted tetralones 1f–h afforded the corresponding naphthyl ethers 6f–h in 79– 91% yield (Entries 5–7). The reaction of β -tetralone 1i allowed

Table 4

.

One-pot synthesis of aryl difluoromethyl ethers.

Scheme 5. Synthesis of cyclic and acyclic enol difluoromethyl ethers (¹⁹F NMR yield).

the formation of the corresponding 2-naphthyl ether $6i$ in 90% yield (Entry 8). A similar treatment of cyclohexanone 1j also provided the corresponding biphenyl-4-yl difluoromethyl ether 6j (Entry 9).

Note that the TFDA/NHC system can be applied to the synthesis of other enol difluoromethyl ethers (Scheme 5). Flavanone 1k was transformed into the corresponding difluoromethoxychromene 2k in 50% yield. In addition, acetophenone 1l afforded the corresponding enol ether 2l in 57% yield in the presence of 3 mol% of SIMes HCl catayst. It has been reported that the treatment of 11 by the TFDA/F^{$-$} system gives difluorocyclopropanated difluoromethyl ether in 27% yield at 120 \degree C [\[23a\].](#page-8-0) NHC was again found to be an efficient and selective catalyst for the synthesis of enol difluoromethyl ethers. As described above, NHC-catalyzed, controlled generation of difluorocarbene from TFDA has realized a ketone-based one-pot synthesis of aryl difluoromethyl ethers.

DDQ = 2,3-dichloro-5,6-dicyano-p-benzoquinone.

Yield in two steps.

^b The corresponding enol ether was obtained as a regioisomeric mixture (conjugated:nonconjugated=88:12, ¹⁹F NMR).

Fig. 2.

N

R

2-Difluoromethoxypyridines

 $OCHF₂$

Scheme 6. Reported nonselective formation of difluoromethyl imidates under basic conditions.

2.4. Synthesis of difluoromethyl imidates

2.4.1. Background and strategy

Difluoromethyl imidate is contained in the structure of 2 difluoromethoxypyridine, which is a motif frequently found in pharmaceuticals and bioactive molecules (Fig. 2) [\[41,42\]](#page-8-0). Difluoromethyl imidates have been synthesized by electrophilic Odifluoromethylation of secondary amides with difluorocarbene (Scheme 6). However, these difluoromethylations led to only a partial success, which was due to affording a regioisomeric mixture of O- and N-difluoromethylated products [\[43\]](#page-8-0). The poor selectivity is presumably because the *basic* conditions, required for the generation of difluorocarbene, cause deprotonation of the amides. The resulting ambident anion B allows formation of not only O- but also N-difluoromethylation products.

In general, (nondeprotonated) amides undergo alkylations on the oxygen atom because the oxygen center is more nucleophilic than the nitrogen center because of resonance (Scheme 7, C). Having the NHC-catalyzed generation of difluorocarbene under nearly neutral conditions in hand, we expected O-selective difluoromethylation of amides to synthesize difluoromethyl imidates [\[44\]](#page-8-0).

2.4.2. Selective synthesis of difluoromethyl imidates

We optimized NHC precursors for difluoromethylation of secondary amides (Scheme 8). It was revealed that IMes-HCl was lacking in reproducibility and that triazolium salt 4 HBr was a suitable catalyst for this purpose [\[45\]](#page-8-0). Note that the formation of

Scheme 7. Strategy for selective synthesis of difluoromethyl imidates.

PhNH	5 mol % NHC precursor TFDA (2.0 equiv)	NPh \div	PhNCHF ₂
Pŀ	20 mol% Na ₂ CO ₃	OCHF ₂ Ph	Ph
7a	Toluene, 80 °C 30 min	8a	9
	IMes·HCl (20-30 min);	$0 - 53%$	
	SIMes·HCI;	56%	
	4·HBr;	80%	
	$5·HI$:	5%	

Scheme 8. Optimization of NHC precursors in difluoromethyl imidate formation $(^{19}$ F NMR yield).

the undesired tertiary amide 9 was not observed over all the NHC precursors examined as a catalyst.

Various difluoromethyl imidates were efficiently synthesized by the triazolium salt-based system [\(Table](#page-5-0) 5). Not only benzoic acid-derived amides but also aliphatic acid-derived amides afforded the corresponding imidates in high yield (Entries 1–4): namely, amides 7a–d gave 8a–d in 66–81% yield. Electrondonating and -withdrawing group on the N-aryl groups did not affect the reaction (Entries 5–8). Although some amount of the imidates decomposed during purification by column chromatography, 19 F NMR analysis suggested that substituted anilides **7e-h** gave 8e–h in 69–83% yield. It must be emphasized that the undesired N-difluoromethylated products were not observed by the ¹⁹F NMR analysis of the crude mixtures.

This method was successfully applied to the synthesis of 2 difluoromethoxypyridines (Scheme 9). When pyridone 7i was subjected to the TFDA/NHC system, the desired 8i was obtained in 60% yield, albeit accompanied by a 9% yield of N-difluoromethylated product. The sequential difluoromethylation–dehydrogenation process is also effective for six-membered lactams: 2 difluoromethoxyquinoline 9 was synthesized from dihydroquionolinone 7j in 92% yield in a one-pot operation.

Scheme 9. Synthesis of 2-difluoromethoxypyridines.

Table 5

Selective synthesis of difluoromethyl imidates.

^a Imidates were obtained selectively.

 b ¹⁹F NMR yield based on $(CF_3)_2$ CTol₂.

3. Conclusion

We have developed a versatile method for the controlled generation of difluorocarbene from TFDA under mild conditions by using NHC catalyst. Cyclohexenones and tetralones were transformed into enol difluoromethyl ethers without difluorocyclopropanation. The enol ethers obtained were dehydrogenated with DDQ to provide substituted aryl difluoromethyl ethers. Moreover, secondary amides were similarly transformed into difluoromethyl imidates via O-selective difluoromethylation, which allows the formation of 2-difluoromethoxypyridines.

4. Experimental

4.1. General information

IR spectra were recorded on Horiba FT-300S spectrometer. NMR spectra were recorded on Bruker Avance 500, Bruker AV600, or Bruker AV400 spectrometers in CDCl₃, at 500, 600, or 400 MHz (¹H NMR), at 126, 150, or 100 MHz (¹³C NMR), and at 470, 565, or 372 MHz $(^{19}F$ NMR). Chemical shift values were given in ppm relative to internal Me₄Si (for ¹H NMR: δ = 0.00), CDCl₃ (for ¹³C NMR: δ = 77.0), and C₆F₆ (for ¹⁹F NMR: δ = 0.0) [\[32\].](#page-8-0) Mass spectra were taken with JMS-T100GCV spectrometer. Elemental analyses were performed with a YANAKO MT-6 CHN Corder apparatus. TFDA was prepared according to the procedure described by Dolbier [\[18b\].](#page-7-0) IMes HCl and SIMes HCl were prepared according to the literature [\[46\]](#page-8-0). IMes, 4 HBr, 5 HI were purchased and used without further purification. All the reactions were conducted under argon. Column chromatography and preparative thin-layer chromatography (PTLC) were performed on silica gel.

4.2. Synthesis of aryl difluoromethyl ethers

4.2.1. Typical procedure for synthesizing aryl difluoromethyl ethers To a toluene solution (0.4 mL) of IMes-HCl (2.7 mg,

0.0079 mmol), sodium carbonate (8.5 mg, 0.080 mmol), and 6,7 dimethyl- α -tetralone 1g (70 mg, 0.40 mmol) was added TFDA (100 μ L, 0.48 mmol) at room temperature. The reaction mixture was stirred and heated at 80 \degree C for 1 h. After cooling the resulting mixture to room temperature, DDQ (182 mg, 0.80 mmol) and toluene (2 mL) was added and the mixture was heated at 100 \degree C for 2 h. Purification by column chromatography ($SiO₂$, hexane) gave $6g$ (82 mg, 91% yield).

4.2.2. Spectra data of aryl difluoromethyl ethers

4.2.2.1. 1-Difluoromethoxy-3-phenylbenzene $(6b)$. ¹H **NMR** $(500 \text{ MHz}, \text{ CDCl}_3): \delta = 7.56 - 7.59 \text{ (m, 2H)}, 7.41 - 7.48 \text{ (m, 4H)},$ 7.38 (tt, $J = 7.4$, 2.1 Hz, 1H), 7.34 (s, 1H), 7.10 (dt, $J = 2.4$ Hz, J = 6.7 Hz, 1H), 6.57 (t, 2 J_{HF} = 74.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = 151.6, 143.3, 139.9, 130.1, 128.9, 127.9, 127.1, 124.2, 118.3, 118.1, 116.0 (t, 1 J_{CF} = 258 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ = 81.3 (d, ²J_{FH} = 74 Hz, 2F). IR (neat): \tilde{v} = 1477, 1196, 1122, 912, 741, 696 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₁₃H₁₀F₂O ([M]⁺): 220.0700; found: 220.0689.

4.2.2.2. 1-Difluoromethoxynaphthalene (6c). 1 H NMR (500 MHz, CDCl₃): $\delta = 8.18 - 8.21$ (m, 1H), 7.84–7.88 (m, 1H), 7.70 (d, $J = 8.3$ Hz, 1H), 7.52-7.58 (m, 2H), 7.41 (t, $J = 7.9$ Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 6.66 (t, 2 J_{HF} = 74.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = 147.4, 134.7, 127.7, 126.9, 126.6, 126.4, 125.4, 125.3, 121.6, 116.6 (t, 1 J_{CF} = 256 Hz), 113.7. ¹⁹F NMR (470 MHz, CDCl₃): δ = 81.9 (d, ²J_{FH} = 74 Hz, 2F). IR (neat): \tilde{v} = 3059, 1373, 1120, 1051,

771 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₁₁H₈F₂O ([M]⁺): 194.0543; found: 194.0548.

4.2.2.3. 7-Bromo-1-difluoromethoxynaphthalene (**6d**). $^1\mathrm{H}$ NMR (500 MHz, CDCl₃): δ = 8.34 (s, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.67 $(d, J = 8.0$ Hz, 1H), 7.62 $(dd, J = 8.8, 1.9$ Hz, 1H), 7.44 $(t, J = 8.0$ Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 6.68 (t, 2 J_{HF} = 73.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = 146.3, 133.0, 130.4, 129.4, 127.4, 125.8, 125.1, 124.1, 120.9, 116.2 (t, $^{1}J_{CF}$ = 256 Hz), 114.5. ¹⁹F NMR $(470 \text{ MHz}, \text{ CDCI}_3)$: $\delta = 81.5 \text{ (d, }^2J_{\text{FH}} = 74 \text{ Hz}, \text{ 2F}.$ IR (neat): $\tilde{v} = 3062$, 1589, 1124, 1049, 823, 742 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for $C_{11}H_7{}^{79}BrF_2O$ ([M]⁺): 271.9648; found: 271.9644.

4.2.2.4. 7-Chloro-1-difluoromethoxynaphthalene (6e). $^1\mathrm{H}$ NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.16$ (s, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.68 $(d, J = 7.9 \text{ Hz}, 1\text{ H}), 7.49 \text{ (dd, } J = 8.8, 2.1 \text{ Hz}, 1\text{ H}), 7.43 \text{ (t, } J = 7.9 \text{ Hz}, 1$ H), 7.23 (d, J = 7.9 Hz, 1H), 6.68 (t, 2 J_{HF} = 73.7 Hz, 1H). ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3): \delta = 146.4, 132.8, 132.7, 129.4, 127.9, 127.1,$ 125.6, 125.1, 120.8, 116.2 (t, $^{1}J_{CF}$ = 259 Hz), 114.5. ¹⁹F NMR $(470 \text{ MHz}, \text{ CDCI}_3)$: $\delta = 81.5 \text{ (d, }^2J_{FH} = 74 \text{ Hz}, 2F)$. IR (neat): $\tilde{v} = 2918, 1593, 1358, 1119, 1032, 822 \text{ cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for C₁₁H₇³⁵ClF₂O ([M]⁺): 228.0154; found: 228.0145

4.2.2.5. 1-Difluoromethoxy-7-methylnaphthalene (6f). $^1\mathrm{H}$ NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.94$ (s, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.66 $(d, J = 8.3 \text{ Hz}, 1\text{ H}), 7.38 \text{ (dd, } J = 8.4, 1.6 \text{ Hz}, 1\text{ H}), 7.34 \text{ (t, } J = 7.9 \text{ Hz},$ 1H), 7.16 (d, J = 7.9 Hz, 1H), 6.65 (t, ${}^{2}J_{H-F}$ = 74.2 Hz, 1H), 2.55 (s, 3H). 13 C NMR (126 MHz, CDCl₃): δ = 147.0, 136.5, 133.0, 129.2, 127.6, 126.6, 125.1, 124.3, 120.4, 116.6 (t, 1 J_{CF} = 257 Hz), 113.8, 22.0. ¹⁹F NMR (470 MHz, CDCl₃): δ = 82.0 (d, ²J_{FH} = 74 Hz, 2F). IR (neat): $\tilde{v} = 3062, 1365, 1115, 1032, 822 \text{ cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for $C_{12}H_{10}F_2O$ ([M]⁺): 208.0700; found: 208.0699.

4.2.2.6. 1-Difluoromethoxy-6,7-dimethylnaphthalene (6g). $\mathrm{^{1}H}$ NMR $(500 \text{ MHz}, \text{CDCl}_3)$: δ = 7.91 (s, 1H), 7.61 (s, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.31 (t, $J = 7.8$ Hz, 1H), 7.09 (d, $J = 7.8$ Hz, 1H), 6.65 (t, 2 J_{HF} = 74.4 Hz, 1H), 2.47 (s, 3H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 146.9, 136.8, 136.6, 133.7, 127.3, 125.1, 124.4 (2C), 120.9, 116.7 (t, ${}^{1}J_{CF}$ = 250 Hz), 112.8, 20.4, 20.2. ¹⁹F NMR (470 MHz, CDCl₃): δ = 82.2 (d, ²J_{FH} = 74 Hz, 2F). IR (neat): \tilde{v} = 2920, 1606, 1379, 1122, 1045 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₁₃H₁₂F₂O ([M]⁺): 222.0856; found: 222.0865.

4.2.2.7. 1-Difluoromethoxy-6-methoxynaphthalene (6h). 1 H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.09 \text{ (d, } J = 9.2 \text{ Hz}, 1 \text{ H})$, 7.59 (d, $J = 8.4 \text{ Hz}$, 1 H), 7.38 (t, $J = 8.0$ Hz, 1H), 7.21 (dd, $J = 9.2$, 2.6 Hz, 1H), 7.15 (d, J = 2.6 Hz, 1H), 7.03 (dd, J = 7.7, 1.0 Hz, 1H), 6.65 (t, 2 J_{HF} = 74.2 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 158.4, 147.6, 136.2, 126.1, 124.1, 123.3, 121.6, 119.3, 116.5 (t, 1 J_{CF} = 257 Hz), 111.2, 105.7, 55.3. ¹⁹F NMR (470 MHz, CDCl₃): δ = 82.0 (d, 2 J_{FH} = 74 Hz, 2F). IR (neat): $\tilde{v} = 1635, 1516, 1255, 1171,$ 1132 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₁₂H₁₀F₂O₂ ([M]⁺): 224.0649; found: 224.0656.

4.2.2.8. 2-Difluoromethoxynaphthalene (6i). 1 H NMR (600 MHz, CDCl₃): δ = 7.85 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.80 $(d, J = 7.8 \text{ Hz}, 1\text{H})$, 7.52 (s, 1H), 7.52 (t, $J = 9.0 \text{ Hz}, 1\text{H}$), 7.45–7.49 (t, $J = 9.0$ Hz, 1H), 7.28 (dd, $J = 9.0$, 2.4 Hz, 1H), 6.63 (t, $^{2}J_{HF} = 73.9$ Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 149.0, 133.8, 131.0, 130.1, 127.8, 127.5, 126.9, 125.7, 119.7, 116.1 (t, 1 J_{CF} = 256 Hz), 115.4. ¹⁹F NMR (565 MHz, CDCl₃): δ = 81.2 (d, ²J_{FH} = 74 Hz, 2F). IR (neat): $\tilde{v} = 2927, 1255, 1171, 912, 742 \text{ cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for $C_{11}H_8F_2O$ ([M]⁺): 194.0543; found: 194.0540.

4.2.2.9. 1-Difluoromethoxy-4-phenylbenzene $(6j)$. ¹H **NMR** (400 MHz, CDCl₃): δ = 7.53–7.60 (m, 4H), 7.44 (t, J = 6.8 Hz, 2H), 7.36 (t, $J = 6.8$ Hz, 1H), 7.19 (d, $J = 8.8$ Hz, 2H), 6.55 (t, $J = 74.0$ Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = 150.6 (t, ³J_{CF} = 2.7 Hz), 140.1, 138.6, 128.8, 128.5, 127.4, 127.0, 119.8, 115.9 (t, 1 J_{CF} = 258 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 81.1$ (d, ²J_{FH} = 74 Hz, 2F). IR (neat): $\tilde{v} = 3033, 1487, 1223, 1126, 764 \text{ cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for $C_{13}H_{10}F_2O$ ([M]⁺): 220.0700; found: 220.0699.

4.2.2.10. 4-Difluoromethoxy-2-phenylchromene $(2k)$. ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3): \delta = 7.44 - 7.47 \text{ (m, 2H)}, 7.33 - 7.42 \text{ (m, 4H)},$ 7.21 (dt, $J = 5.0$, 1.5 Hz, 1H), 6.94 (dt, $J = 7.5$, 1.0 Hz, 1H), 6.83 (dd, J = 8.0, 1.0 Hz, 1H), 6.55 (t, $^{2}J_{HF}$ = 74.0 Hz, 1H), 6.02 (d, J = 3.5 Hz, 1H), 5.29 (d, J = 3.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = 154.1, 143.8, 140.2, 131.0, 128.71, 128.67, 126.9, 122.0, 121.2, 117.5, 116.1, 115.3 (t, 1 J_{CF} = 260 Hz), 103.7, 77.1. ¹⁹F NMR (470 MHz, CDCl₃): δ = 80.0 (d, ²J_{FH} = 74 Hz, 2F). IR (neat): \tilde{v} = 3033, 1655, 1454, 1122, 756 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for $C_{16}H_{12}F_2O_2$ ([M]+): 274.0805; found: 274.0811.

4.2.2.11. 1-Difluoromethoxystyrene $(2l)$. ¹H NMR $(500$ MHz, CDCl₃): δ = 7.59–7.61 (m, 2H), 7.36–7.39 (m, 3H), 6.53 (t, $J = 74.0$ Hz, 1H), 5.13 (d, $J = 3.4$ Hz, 1H), 4.74 (d, $J = 3.4$ Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = 154.3, 133.6, 129.4, 128.5, 125.3, 115.8 (t, 1 J_{CF} = 258 Hz), 93.0. ¹⁹F NMR (470 MHz, CDCl₃): δ = 80.3 (d, 2 J_{FH} = 74 Hz, 2F). IR (neat): $\tilde{v} = 2927, 1635, 1126, 1047,$ 771 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₉H₈F₂O ([M]⁺): 170.0543; found: 170.0542.

4.3. Synthesis of difluoromethyl imidates

4.3.1. Typical procedure for synthesizing difluoromethyl imidates

To a toluene solution (1.5 mL) of 4 -HBr $(3.4 \text{ mg}, 0.0098 \text{ mmol})$, sodium carbonate (4.2 mg, 0.040 mmol), and N-phenylcyclohexanecarboxamide 7d (39 mg, 0.19 mmol) was added TFDA (75 μ L, 0.38 mmol) at room temperature. The reaction mixture was stirred and heated at 80 \degree C for 20 min. After cooling the resulting mixture to room temperature, aquaus NaOH was added to quench the reaction. Extraction with dichloromethane and purification by column chromatography (SiO₂, hexane:AcOEt = 50:1, 0 \degree C) gave **8d** (39 mg, 81% yield).

4.3.2. Spectra data of difluoromethyl imidates

4.3.2.1. Difluoromethyl N-phenyl-1-phenylmethanimidate (8a). 1 H NMR (500 MHz, CDCl₃): δ = 7.48 (t, ²J_{HF} = 72.8 Hz, 1H, broad), 7.38 $(t, J = 7.5$ Hz, 2H), 7.22-7.29 (m, 5H), 7.05 (t, $J = 7.5$ Hz, 1H), 6.78 (d, $J = 7.5$ Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 153.4$ (broad), 146.0, 131.2, 129.5, 129.2, 128.2, 123.9, 120.9, 113.6 (t, 1 J_{CF} = 255 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ = 70.8 (d, ²J_{FH} = 73 Hz, 2F). IR (neat): $\tilde{v} = 2929, 1687, 1267, 1113, 912, 744 \text{ cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for C₁₄H₁₁F₂NO ([M]⁺): 247.0809; Found: 247.0812.

4.3.2.2. Difluoromethyl N-phenylethan-1-imidate $(8b)$. ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3): \delta = 7.37 \text{ (t, }^2\text{ J}_{\text{HF}} = 72.1 \text{ Hz}, 1 \text{ H}), 7.32 \text{ (t, }^2\text{ J}_{\text{HF}} = 72.1 \text{ Hz})$ $J = 7.6$ Hz, 2H), 7.11 (t, $J = 7.6$ Hz, 1H), 6.78 (d, $J = 7.6$ Hz, 2H), 1.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 157.3, 146.3, 129.2, 124.1, 120.5, 113.0 (t, $^{1}J_{CF}$ = 255 Hz), 15.6. ¹⁹F NMR (470 MHz, CDCl₃): δ = 71.0 (d, ²J_{FH} = 72 Hz, 2F). IR (neat): \tilde{v} = 1701, 1238, 1105, 1086, 912 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₉H₉F₂NO ([M]+): 185.0652; found: 185.0653.

4.3.2.3. Difluoromethyl N-phenyl-2-methylpropan-1-imidate (8c). 1 H NMR (500 MHz, CDCl₃): δ = 7.33 (t, ²J_{HF} = 72.6 Hz, 1H), 7.31 (t, $J = 8.0$ Hz, 2H), 7.09 (t, $J = 8.0$ Hz, 1H), 6.75 (d, $J = 8.0$ Hz, 2H), 2.72 (septet, J = 6.5 Hz, 1H), 1.14 (d, J = 6.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ = 163.0, 146.2, 129.2, 123.8, 120.3, 113.4 (t, ¹J_{CF} = 254 Hz), 28.6, 19.2. ¹⁹F NMR (470 MHz, CDCl₃): δ = 70.3 (d, ²J_{FH} = 73 Hz, 2F).

IR (neat): $\tilde{\nu} = 2978$, 1695, 1244, 1109, 912 cm $^{-1}$. HRMS (70 eV, EI): m/z calcd. for $C_{11}H_{13}F_2NO$ ([M]⁺): 213.0965; Found: 213.0968.

4.3.2.4. Difluoromethyl N-pheny-1-cyclohexylmethanimidate (8d). ¹H NMR (500 MHz, CDCl₃): δ = 7.31 (t, ²J_{HF} = 72.6 Hz, 1H), 7.31 (t, J = 8.0 Hz, 2H), 7.10 (t, J = 8.0 Hz, 1H), 6.74 (d, J = 8.0 Hz, 2H), 2.37–2.42 (m, 1H), 1.68–1.74 (m, 4H), 1.57–1.65 (m, 3H), 1.15–1.23 (m, 1H), 1.07–1.13 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = 162.2, 146.1, 129.2, 123.7, 120.4, 113.4 (t, 1_{CF} = 254 Hz), 38.4, 29.0, 25.4, 25.2. ¹⁹F NMR (470 MHz, CDCl₃): δ = 70.5 (d, ²J_{FH} = 73 Hz, 2F). IR (neat): $\tilde{\nu} = 2935$, 1697, 1238, 1124, 912 cm $^{-1}$. HRMS (70 eV, EI): m/z calcd. for $C_{14}H_{17}F_2NO$ ([M]⁺): 253.1278; found: 253.1282.

4.3.2.5. Difluoromethyl N-(p-tolyl)ethan-1-imidate (8e). 1 H NMR $(500 \text{ MHz}, \text{ CDCl}_3): \delta = 7.36 \text{ (t, }^2\text{ J}_{HF} = 72.3 \text{ Hz}, \text{ 1H}), \text{ 7.12 (d, }^2\text{ J}_{HF} = 72.3 \text{ Hz})$ $J = 7.8$ Hz, 2H), 6.68 (d, $J = 7.8$ Hz, 2H), 2.32 (s, 3H), 1.94 (s, 3H). 13° C NMR (126 MHz, CDCl₃): δ = 157.2, 143.7, 133.6, 129.7, 120.4, 113.0 (t, $^{1}J_{CF}$ = 255 Hz), 20.8, 15.5. ¹⁹F NMR (470 MHz, CDCl₃): δ = 71.1 (d, 2 J_{FH} = 72 Hz, 2F). IR (neat): $\tilde{\nu}$ = 2925, 1699, 1508, 1230, 1065 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₁₀H₁₁F₂NO ([M]⁺): 199.0809; Found: 199.0808.

4.3.2.6. Difluoromethyl N-(p-methoxyphenyl)ethan-1-imidate (8f). ¹H NMR (500 MHz, CDCl₃): δ = 7.36 (t, ²J_{HF} = 72.4 Hz, 1H), 6.86 (d, J = 8.6 Hz, 2H), 6.72 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 157.4, 156.4, 139.5, 121.6, 114.4, 113.0 (t, 1_{CF} = 255 Hz), 55.4, 15.5. ¹⁹F NMR (470 MHz, CDCl₃): δ = 70.6 (d, ²J_{FH} = 72 Hz, 2F). IR (neat): \tilde{v} = 2956, 1699, 1506, 1230, 1103 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for $C_{10}H_{11}F_2NO_2$ ([M]⁺): 215.0758; Found: 215.0760.

4.3.2.7. Difluoromethyl N-(p-fluorophenyl)ethan-1-imidate (**8g**). $^1\mathrm{H}$ NMR (500 MHz, CDCl₃): δ = 7.34 (t, ²J_{HF} = 72.1 Hz, 1H), 7.02 (dd, ³L_{HF} = 72.1 Hz, 2H) 1.05 (s J_{HF} = J = 8.5 Hz, 2H), 6.74 (dd, $^{4}J_{\text{HF}}$ = 4.0 Hz, J = 8.5 Hz, 2H), 1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 159.7 (d, ¹J_{CF} = 242 Hz), 157.9, 142.4 (d, ³J_{CF} = 3 Hz), 121.9, 115.4 (d, ²J_{CF} = 23 Hz), 112.9 (t, ¹J_{CF} = 25 Hz), 15.6 ¹⁹F NMR (470 MHz CDCL); δ = 70.5 (d $^{1}J_{CF}$ = 255 Hz), 15.6. ¹⁹F NMR (470 MHz, CDCl₃): δ = 70.5 (d, J_{FH} = 72 Hz, 2F), 42.0 (tt, $^{3}J_{\text{FH}}$ = 8.5 Hz, $^{4}J_{\text{FH}}$ = 4.0 Hz, 1F). IR (neat): $\tilde{v} = 1705, 1506, 1240, 1109, 914 \text{ cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for $C_9H_8F_3NO$ ([M]⁺): 203.0558; found: 203.0553.

4.3.2.8. Difluoromethyl N-(p-chlorophenyl)ethanimidate (8h). 1 H NMR (500 MHz, CDCl₃): δ = 7.33 (t, ²J_{HF} = 72.0 Hz, 1H), 7.29 (d, $J = 8.5$ Hz, 2H), 6.72 (d, $J = 8.5$ Hz, 2H), 1.95 (s, 3H). ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3)$: δ = 157.8, 144.9, 129.6, 129.3, 121.9, 112.9 (t, $^{1}J_{CF}$ = 256 Hz), 15.6. ¹⁹F NMR (470 MHz, CDCl₃): δ = 70.4 (d, $^{2}J_{FH}$ = 72 Hz, 2F). IR (neat): $\tilde{v} = 1703$, 1240, 1136, 1088, 914 cm $^{-1}$. HRMS (70 eV, EI): m/z calcd. for $C_9H_8^{35}$ ClF₂NO ([M]⁺): 219.0262; found: 219.0260.

4.3.2.9. 2-Difluoromethoxypyridine (8 i). $\,{}^{1}$ H NMR (500 MHz, CDCl $_{3}$): δ = 8.20 (dd, J = 5.0, 1.5 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.48 (t, 2 J_{HF} = 73.5 Hz, 1H), 7.10 (ddd, J = 7.5, 5.0, 1.0 Hz, 1H), 6.90 (d, $J = 7.5$ Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 159.1, 147.0, 140.0,$ 120.0, 114.0 (t, 1 J_{CF} = 255 Hz), 111.5. ¹⁹F NMR (470 MHz, CDCl₃): δ = 72.8 (d, 2 J_{FH} = 74 Hz, 2F). IR (neat): $\tilde{\nu}$ = 2925, 1261, 1219, 1099, 773 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for $C_6H_5F_2NO$ ([M]⁺): 145.0339; found: 145.0341.

4.3.2.10. 2-Difluoromethoxyquinoline (9) . ¹H NMR $(500$ MHz, CDCl₃): δ = 8.13 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.77 $(dd, J = 7.7, 3.0 \text{ Hz}, 1\text{H}$), 7.74 $(t, {}^{2}J_{\text{HF}} = 72.7 \text{ Hz}, 1\text{H}$), 7.68 $(dd, J = 7.7,$ 7.7, 3.0 Hz, 1H), 7.48 (ddd, $J = 7.7$, 7.7, 3.0 Hz, 1H), 7.00 (d, $J = 8.8$ Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 157.3$, 145.5, 140.5, 130.3, 127.8, 127.6, 126.1, 125.7, 113.9 (t, 1 J_{CF} = 255 Hz), 111.8. ¹⁹F NMR (470 MHz, CDCl₃): δ = 72.1 (d, ²J_{FH} = 73 Hz, 2F). IR (neat):

 $\tilde{v} = 1604, 1311, 1232, 1065, 912 \text{ cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for $C_{10}H_7F_2NO$ ([M]⁺): 195.0496; found: 195.0496.

Acknowledgments

This research was partly supported by Grant-in-Aid for Exploratory Research from MEXT, Japan, and the Naito Foundation. We acknowledge generous gift of methyl 2,2-difluoro-2-fluorosulfonylacetate from Kanto Denka Kogyo Co., Ltd.

References

- [1] (a) M. Hudlický, A.E. Pavlath (Eds.), Chemistry of Organic Fluorine Compounds II: A Critical Review, American Chemical Society, Washington, 1995; (b) D.L.S. Brahms, W.P. Dailey, Chem. Rev. 96 (1996) 1585–1632;
	- (c) W.R. Dolbier Jr., M.A. Battiste, Chem. Rev. 103 (2003) 1071–1098.
- [2] (a) T. Hiyama, Organofluorine Compounds: Chemistry and Applications, Spring
	- er, Berlin, 2000; (b) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, VeinHeim, 2004;
	- (c) K. Uneyama, Organofluorine Chemistry, Blackwell, Oxford, 2006;
- (d) J.-P. Bégué, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, 2008.
- [3] (a) J.M. Birchall, G.E. Cross, R.N. Haszeldine, Proc. Chem. Soc. (1960), 81–81; (b) L.H. Knox, E. Velarde, S. Berger, D. Cuadriello, P.W. Landis, A.D. Cross, J. Am. Chem. Soc. 85 (1963) 1851–1858; (c) C. Beard, N.H. Dyson, J.H. Fried, Tetrahedron Lett. 7 (1966) 3281–3286; (d) P.D. O'Shea, C.-y. Chen, W. Chen, P. Dagneau, L.F. Frey, E.J.J. Grabowski, K.M. Marcantonio, R.A. Reamer, L. Tan, R.D. Tillyer, A. Roy, X. Wang, D. Zhao, J. Org. Chem. 70 (2005) 3021–3030;

(e) D. Babin, F. Pilorge, L.M. Delbarre, J.P. Demoute, Tetrahedron 51 (1995) 9603– 9610.

- [4] K. Oshiro, Y. Morimoto, H. Amii, Synthesis (2010) 2080–2084 (Recently, Amii has reported a generation of difluorocarbene from sodium bromodifluoroacetate with low reagent loadings).
- [5] Y. Chang, C. Cai, Chem. Lett. 34 (2005) 1440–1441.
-
- [6] (a) P.B. Sargeant, J. Org. Chem. 35 (1970) 678–682; (b) H. Millauer, W. Schwertfeger, G. Siegemund, Angew. Chem. Int. Ed. 24 (1985) 161–179.
- [7] (a) J.M. Birchall, R.N. Haszeldine, D.W. Roberts, Chem. Commun. (1967) 287–288; (b) J.M. Birchall, R. Fields, R.N. Haszeldine, R.J. McLean, J. Fluorine Chem. 15 (1980) 487–495.
- [8] (a) R.A. Mitsch, J. Heterocycl. Chem. 1 (1964) 271–274; (b) R.A. Mitsch, J. Am. Chem. Soc. 87 (1965) 758–761 (For thermal generation of difluorocarbene from difluoroazirine).
- [9] (a) R.A. Mitsch, J. Heterocycl. Chem. 1 (1964) 59–60; (b) R.A. Moss, L. Wang, K. Krogh-Jespersen, J. Am. Chem. Soc. 131 (2009) 2128– 2130 (For photolytic generation of difluorocarbene from difluoroazirine).
- [10] (a) T.G. Miller, J.W. Thanassi, J. Org. Chem. 25 (1960) 2009–2012;
	- (b) B.R. Langlois, J. Fluorine Chem. 41 (1988) 247–261;
	- (c) A. Fuss, V. Koch, Synthesis (1990) 604–608;
	- (d) T.Y. Shen, S. Lucas, L.H. Sarett, Tetrahedron Lett. 2 (1961) 43–47;
	- (e) A. Fuss, V. Koch, Synthesis (1990) 681–685.
- [11] (a) L. Zhang, J. Zheng, J. Hu, J. Org. Chem. 71 (2006) 9845–9848;
- (b) G. Guerrini, G. Ciciani, F. Bruni, S. Selleri, C. Guarino, F. Melani, M. Montali, S. Daniele, C. Martini, C. Ghelardini, M. Norcini, S. Ciattini, A. Costanzo, J. Med. Chem. 53 (2010) 7532–7548.
- [12] (a) J. Zheng, Y. Li, L. Zhang, J. Hu, G.J. Meuzelaar, H.-J. Federsel, Chem. Commun. (2007) 5149–5151;
	- (b) W. Zhang, F. Wang, J. Hu, Org. Lett. 11 (2009) 2109–2112;
	- (c) Y. Zafrani, G. Sod-Moriah, Y. Segall, Tetrahedron 65 (2009) 5278–5283.
- [13] G.K.S. Prakash, Z. Zhang, F. Wang, C. Ni, G.A. Olah, J. Fluorine Chem. 132 (2011) 792–798.
- [14] (a) D. Seyferth, J.Y.-P. Mui, M.E. Gordon, J.M. Burlitch, J. Am. Chem. Soc. 87 (1965) 681–682;
- (b) D. Seyferth, S.P. Hopper, K.V. Darragh, J. Am. Chem. Soc. 91 (1969) 6536–6537;
- (c) D. Seyferth, S.P. Hopper, J. Org. Chem. 37 (1972) 4070–4075. [15] I. Nowak, M.J. Robins, Org. Lett. 7 (2005) 721–724.
- [16] D. Seyferth, H. Dertouzos, R. Suzuki, J.Y.-P. Mui, J. Org. Chem. 32 (1967) 2980– 2984.
- [17] (a) D.J. Burton, D.G. Naae, J. Am. Chem. Soc. 95 (1973) 8467-8468 (Burton and Dolbier reported practical methods for the generation of difluorocarbene that proceed at room temperature); (b) W.R. Dolbier Jr., H. Wojtowicz, C.R. Burkholder, J. Org. Chem. 55 (1990) 5420–

5422; (c) Y. Bessard, U. Müller, M. Schlosser, Tetrahedron 46 (1990) 5213-5221.

- [18] (a) F. Tian, V. Kruger, O. Bautista, J.-X. Duan, A.-R. Li, W.R. Dolbier Jr., Q.-Y. Chen, Org. Lett. 2 (2000) 563–564; (b) W.R. Dolbier Jr., F. Tian, J.-X. Duan, A.-R. Li, S. Ait-Mohand, O. Bautista, S. Buathong, J.M. Baker, J. Crawford, P. Anselme, X.H. Cai, A. Modzelewska, H.
- Koroniak, M.A. Battiste, Q.-Y. Chen, J. Fluorine Chem. 125 (2004) 459–469. [19] T. Itoh, N. Ishida, K. Mitsukura, K. Uneyama, J. Fluorine Chem. 112 (2001) 63–68.
- [20] (a) W. Xu, Q.-Y. Chen, J. Org. Chem. 67 (2002) 9421–9427; (b) Z.-L. Cheng, Q.-Y. Chen, Synlett (2006) 478–480;
- (c) X.-C. Hang, W.-P. Gu, Q.-Y. Chen, J.-C. Xiao, Tetrahedron 65 (2009) 6320–6324.
- Z.-L. Cheng, J.-C. Xiao, C. Liu, Q.-Y. Chen, Eur. J. Org. Chem. (2006) 5581-5587.
- [22] (a) M. Rapp, X. Cai, W. Xu, W.R. Dolbier Jr., S.F. Wnuk, J. Fluorine Chem. 130 (2009)
- 321–328; (b) W. Xu, K.A. Abboud, I. Ghiviriga, W.R. Dolbier Jr., M. Rapp, S.F. Wnuk, Org. Lett. 8 (2006) 5549–5551.
- [23] (a) X. Cai, Y. Zhai, I. Ghiviriga, K.A. Abboud, W.R. Dolbier Jr., J. Org. Chem. 69 (2004) 4210–4215;
- (b) X. Cai, K. Wu, W.R. Dolbier Jr., J. Fluorine Chem. 126 (2005) 479–482.
- [24] (a) S.P. Nolan (Ed.), N-Heterocyclic Carbenes in Synthesis, Wiley-VCH, Weinheim, 2006;
	- (b) N. Marion, S. Díez-González, S.P. Nolan, Angew. Chem. Int. Ed. 46 (2007) 2988–3000;
	- (c) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 107 (2007) 5606–5655 (For reviews on NHC catalyst).
- [25] (a) G.A. Grasa, T. Güveli, R. Singh, S.P. Nolan, J. Org. Chem. 68 (2003) 2812–2819; (b) Y.-K. Liu, R. Li, L. Yue, B.-J. Li, Y.-C. Chen, Y. Wu, L.-S. Ding, Org. Lett. 8 (2006) 1521–1524;
	- (c) H. Takikawa, K. Suzuki, Org. Lett. 9 (2007) 2713–2716;
	- (d) Y.Kayaki,M.Yamamoto, T.Ikariya,Angew.Chem.Int. Ed. 48(2009) 4194–4197;
	- (e) J.M. O'Brien, A.H. Hoveyda, J. Am. Chem. Soc. 133 (2011) 7712–7715 (For recent cataytic reactions using NHC as an organocatalyst).
- [26] (a) J.J. Song, F. Gallou, J.T. Reeves, Z. Tan, N.K. Yee, C.H. Senanayake, J. Org. Chem. 71 (2006) 1273–1276;
	- (b) Y. Fukuda, Y. Maeda, S. Ishii, K. Kondo, T. Aoyama, Synthesis (2006) 589–590; (c) T. Kano, K. Sasaki, T. Konishi, H. Mii, K. Maruoka, Tetrahedron Lett. 47 (2006)
	- 4615–4618; (d) Y. Suzuki, M.D.A. Bakar, K. Muramatsu, M. Sato, Tetrahedron 62 (2006) 4227– 4231.
- [27] J.J. Song, Z. Tan, J.T. Reeves, N.K. Yee, C.H. Senanayake, Org. Lett. 9 (2007) 1013– 1016.
- [28] J. Wu, X. Sun, S. Ye, W. Sun, Tetrahedron Lett. 47 (2006) 4813–4816.
- [29] J.J. Song, Z. Tan, J.T. Reeves, F. Gallou, N.K. Yee, C.H. Senanayake, Org. Lett. 7 (2005) 2193–2196.
- [30] T.E. Reynolds, C.A. Stern, K.A. Scheidt, Org. Lett. 9 (2007) 2581-2584.
- [31] (a) S.-K. Tian, R. Hong, L. Deng, J. Am. Chem. Soc. 125 (2003) 9900–9901;
- (b) S. Soo Kim, G. Rajagopal, D. Won Kim, D. Ho Song, Synth. Commun. 34 (2004) 2973–2980;

(c) N. Takenaka, R.S. Sarangthem, B. Captain, Angew. Chem. Int. Ed. 47 (2008) 9708–9710.

- [32] 1,1,1,3,3,3-Hexafluoro-2,2-di(p-tolyl)propane (δ 97.9 vs. C₆F₆) was used as an internal standard.
- [33] B. Kohl, E. Sturm, J. Senn-Bilfinger, W.A. Simon, U. Krueger, H. Schaefer, G. Rainer, V. Figala, K. Klemm, J. Med. Chem. 35 (1992) 1049–1057.
- [34] J.C. Kips, G.F. Joos, R.A. Peleman, R.A. Pauwels, Clin. Exp. Allergy 23 (1993) 518– 523.
- [35] G. Sun, W. Jin, L. Zuo, H. Xie, PCT Int. Appl. WO 9518790, 1995.
- [36] P. Kirsch, M. Bremer, Angew. Chem. Int. Ed. 39 (2000) 4216–4235.
- [37] (a) F. Leroux, P. Jeschke, M. Schlosser, Chem. Rev. 105 (2005) 827–856; (b) J. Hu, W. Zhang, F. Wang, Chem. Commun. (2009) 7465–7478; (c) B. Manteau, S. Pazenok, J.-P. Vors, F.R. Leroux, J. Fluorine Chem. 131 (2010) 140–158.
- [38] (a) Q.-Y. Chen, S.-W. Wu, J. Fluorine Chem. 44 (1989) 433–440; (b) S.V. Pasenok, Y.L. Yagupolskii, W. Tyrra, D. Naumann, Z. Anorg, Allg. Chem. 625 (1999) 831–833; (c) J.Z. Ho, C.S. Elmore, M.A. Wallace, D. Yao, M.P. Braun, D.C. Dean, D.G. Melillo, C.-y. Chen, Helv. Chim. Acta 88 (2005) 1040–1047 (and Refs. [3d,11,12]), (For
- other syntheses of aryl difluoromethyl ethers from phenols and difluorocarbene). [39] (a) S. Stavber, Z. Koren, M. Zupan, Synlett (1994) 265–266; (b) Y. Hagooly, O. Cohen, S. Rozen, Tetrahedron Lett. 50 (2009) 392–394 (For the
- synthesis of aryl difluoromethyl ethers without using difluorocarbene). [40] K. Fuchibe, Y. Koseki, H. Sasagawa, J. Ichikawa, Chem. Lett. 40 (2011) 1189–1191.
- [41] R.A. Hartz, V.T. Ahuja, X. Zhuo, R.J. Mattson, D.J. Denhart, J.A. Deskus, V.M. Vrudhula, S. Pan, J.L. Ditta, Y.-Z. Shu, J.E. Grace, K.A. Lentz, S. Lelas, Y.-W. Li, T.F. Molski, S. Krishnananthan, H. Wong, J. Qian-Cutrone, R. Schartman, R. Denton, N.J. Lodge, R. Zaczek, J.E. Macor, J.J. Bronson, J. Med. Chem. 52 (2009) 7653–7668.
- [42] I. Kmentova, H.S. Sutherland, B.D. Palmer, A. Blaser, S.G. Franzblau, B. Wan, Y. Wang, Z. Ma, W.A. Denny, A.M. Thompson, J. Med. Chem. 53 (2010) 8421– 8439.
- [43] (a) E. Nawrot, A. Jonczyk, J. Fluorine Chem. 127 (2006) 943–947;
- (b) J.P. Chupp, D.M. Hemmerly, J.J. Freeman, J. Org. Chem. 58 (1993) 245–248. [44] O-difluoromethylation of benzamides of adenine nucleosides by TFDA/F⁻ system
- was described by Dolbier (See Ref. [22a]). [45] We found that quaternary ammonium bromides also promote the decomposition of TFDA, albeit less effective than NHC.
- [46] A.J. Arduengo, R. Krafczyk, R. Schmutzler, H.A. Craig, J.R. Goerlich, W.J. Marshall, M. Unverzagt, Tetrahedron 55 (1999) 14523–14534.